
Функциональная спецификация программного обеспечения
«Идемпотентный прокси-сервис»

1. Описание

Настоящий документ содержит описание функциональных характеристик программного
обеспечения «Идемпотентный прокси-сервис» (далее «Сервис»). Сервис представляет собой
HTTP-прокси с поддержкой идемпотентности, предназначенный для обеспечения надежной
обработки повторяющихся запросов в распределенных системах.

2. Среда функционирования продукта

Сервис функционирует в любой среде, поддерживающей контейнерную виртуализацию.
Предпочтительными средами являются системы оркестрации Docker Swarm или Kubernetes.

3. Функциональные требования

В распределенных системах и микросервисной архитектуре часто возникают ситуации, когда
один и тот же запрос может быть отправлен несколько раз из-за сетевых проблем, таймаутов
или сбоев клиентов. Сервис предназначен для обеспечения идемпотентности HTTP-запросов
методов POST, PUT и PATCH путем их проксирования с сохранением и повторным
использованием результатов.

Основная функциональность:

3.1. Обработка HTTP-запросов с идемпотентностью

• Поддержка методов: POST, PUT, PATCH
• Обязательный заголовок Idempotency-Key для идентификации запросов
• Автоматическое проксирование запросов на целевые URL, указанные в

параметре URL
• Фильтрация hop-by-hop заголовков при передаче на апстрим
• Удаление заголовка Idempotency-Key при передаче на апстрим

3.2. Механизм кэширования ответов

• Сохранение полного ответа апстрима (статус, заголовки, тело)
• Настраиваемое время жизни кэшированных ответов
• Возврат закэшированных ответов для повторных запросов с тем же ключом

3.3. Распределенные блокировки

• Предотвращение дублирующих вызовов апстрима при конкурентных запросах
• Ключи блокировок: idem:lock:{Idempotency-Key}
• Настраиваемое время удержания блокировки (LOCK_TTL)
• Токен-базированное управление блокировками для безопасного освобождения

3.4. Обработка конкурентных запросов

• Первый запрос получает блокировку и обрабатывается
• Последующие запросы ожидают завершения первого в течение LOCK_TTL
• Автоматическое возвращение результата после завершения первого запроса
• Возврат статуса 409 Conflict при превышении времени ожидания

3.5. Поддержка различных хранилищ

• Redis (рекомендуемый для продакшена): распределенное хранение и блокировки
• In-memory (для тестирования): потокобезопасные мапы с TTL
• Прозрачное API хранилища с единым интерфейсом

3.6. Логирование и мониторинг

• Детальное логирование всех операций: метод, URL, ключ идемпотентности, статус,
источник

• Логирование ошибок и таймаутов
• Измерение времени выполнения операций

3.7. Обработка ошибок

• Корректная обработка таймаутов апстрима (статус 504 Gateway Timeout)
• Обработка ошибок сети (статус 502 Bad Gateway)
• Обработка отмененных запросов клиентом
• Гарантированное освобождение блокировок даже при ошибках

3.8. Оптимизация производительности

• Минимальные задержки при попадании в кэш
• Эффективный механизм ожидания для конкурентных запросов
• Настраиваемые таймауты для различных операций

4. Системные требования к ПО

Минимальные аппаратные требования:

• Операционная система, способная запускать контейнеры (предпочтительно Linux)
• Система управления контейнерной виртуализацией (Docker Swarm или Kubernetes)
• Количество логических ядер процессора: 2
• Семейство процессоров: x86
• Частота процессора: 2.0 ГГц
• Объем установленной памяти: 4 Гб

4.1. Минимальные требования к сторонним компонентам и/или системам,

необходимым для установки и работы ПО

• Для хранения данных:

o Redis 6.0+ (лицензия BSD)

o или использование встроенного in-memory хранилища (для тестирования)
• Для мониторинга и логирования (опционально):

o Prometheus + Grafana для метрик
o ELK Stack или Loki для централизованного логирования

• Контейнеризация:

o Docker 20.10+ (open-source community edition)
o Podman 3.0+ (альтернатива Docker)

4.2. Языки программирования

При разработке Сервиса был использован язык программирования Go 1.21+ (лицензия BSD).

5. Модули

Модуль обработки HTTP-запросов — отвечает за прием входящих HTTP-запросов, валидацию
заголовков, извлечение Idempotency-Key и маршрутизацию.

6. Безопасность

• Заголовок Idempotency-Key не передается на апстрим
• Фильтрация hop-by-hop заголовков для предотвращения утечки информации
• Токен-базированное управление блокировками для предотвращения

несанкционированного освобождения
• Поддержка аутентификации Redis при необходимости

7. Масштабируемость

Сервис поддерживает горизонтальное масштабирование при использовании Redis в
качестве хранилища. Несколько экземпляров сервиса могут работать параллельно, разделяя
состояние через Redis.

8. Ограничения

• Идемпотентность гарантируется только в пределах времени жизни ключа
(IDEMPOTENCY_TTL)

• Размер кэшируемых ответов ограничен доступной памятью Redis/процесса
• Не поддерживается для методов GET, DELETE, HEAD, OPTIONS
• Требуется уникальный Idempotency-Key для каждого логически уникального запроса

